Lettuce agronomic yield in aquaponic system under different tilapia storage densities
DOI:
https://doi.org/10.5016/1984-5529.2024.v52.1418Abstract
– Lettuce crop is very important to Brazil, since it is the most grown and preferable leafy vegetable by consumers. However, there is little scientific information that alleges the yield potential of this crop growing in aquaponics. Therefore, the aim of this study was to evaluate yield performance of lettuce grown in aquaponic system under different Nile tilapia (Oreohromis niloticus) storage densities. Field experiment had a completely randomized design, with three replicates per treatment, in factorial arrangement 4x3: lettuce varieties (A – Lídia, B – Elisa, C – Vanda, and D – Milena) and storage densities (D1 – 30, D2 – 60, and D3 – 90 fishes m-3). The harvest was carried out 28-days from seedlings transplanting and after it the following agronomic parameters were assessed: plant height (PH), head diameter (HD), number of leaves (NL), fresh mass of leaves (LFM) and root (RFM), dry mass of leaves (LDM) and root (RDM), and effective yield (EY). Water parameters such as dissolved oxygen (DO) and pH were also monitored, as well as the thermal amplitude of the greenhouse (ΔT). The data set was subjected to following statistical tests (P<0.05): Shapiro-Wilk’s normality, homoscedasticity, Fisher’s variance, and Tukey’s multiple comparisons. Findings revealed that there was no rejection of null hypothesis at interaction level between causes of variation. The plain varieties (Lídia and Elisa) showed higher values of DPA and NF, giving a relevant characteristic to fresh consumption. The curly varieties (Vanda and Milena) conferred higher PDT, relevant characteristics for agro-industrial processing. The intermediate stocking density (D2) provided better lettuce performance and a water quality suitable for the development of the hydroponic component. It was concluded that the lettuce varieties grown in an aquaponic system showed different marketing aptitudes and that the stocking density of 60 fishes m-3 provided higher agronomic yield to lettuces.
References
Abbey M, Anderson NO, Yue C, Schermann M, Phelps N, Venturelli P, Vickers Z (2019) Lettuce (Lactuca sativa) production in northern latitudinal aquaponic growing conditions. HortScience 54(10):1757-1761. doi: 10.21273/HORTSCI14088-19
Ahmed HA, Yu-Xin T, Qi-Chang Y (2020) Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a review. South African Journal of Botany 130:75-89. doi: 10.1016/j.sajb.2019.12.018
Ajitama P, Effendi H, Hariyadi S (2018) Usage of fisheries rearing waste for butterhead lettuce (Lactuca sativa L. var. capitata) cultivation in recirculation. Nature Environment and Pollution Technology 17(1):145-151.
Al-Tawaha AR, Al-Karaki G, Al-Tawaha AR, Sirajuddin SN, Makhadmeh I, Wahab PEM, Youssef RA, Al Sultan W, Massadeh, A (2018) Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulgarian Journal of Agricultural Science 24:793-800.
Ani JS, Manyala JO, Masese FO, Fitzsimmons K (2022) Effect of stocking density on growth performance of monosex Nile Tilapia (Oreochromis niloticus) in the aquaponic system integrated with lettuce (Lactuca sativa). Aquaculture and Fisheries 7(3):328-335. doi: 10.1016/j.aaf.2021.03.002
Ani JS, Masese FO, Manyala JO, Fitzsimmons K (2021) Assessment of the performance of aquaponics and its uptake for integrated fish and plant farming in Sub-Saharan Africa. Africa Environmental Review Journal 4(2):123-138.
Bosma RH, Lacambra L, Landstra Y, Perini C, Poulie J, Schwaner MJ, Yin Y (2017) The financial feasibility of producing fish and vegetables through aquaponics. Aquacultural Engineering 78:146-154. doi: 10.1016/j.aquaeng.2017.07.002
Brzezinski CR, Abati J, Geller A, Werner F, Zucareli C (2017) Production of cultivars of iceberg lettuce under two cropping systems. Revista Ceres, 64(1), 83-89. doi: 10.1590/0034-737x201764010012
Casadei E, Bacha AL, Rodrigues JS, Santos RT, Alves PLCA, Filho ABC (2020) Redroot pigweed interference with lettuce crop. Planta Daninha 38:e020222945. doi: 10.1590/s0100-83582020380100058
Castillo-Castéllanos D, Leal-Zavala I, Ruiz-Velasco JMJ, Radilla-Garcia A, Nieto-Navarro JT, Romero-Bañuelos CA, González-Hernández J (2016) Implementation of an experimental nutrient film technique-type aquaponic system. Aquaculture International 24:637-646. doi: 10.1007/s10499-015-9954-z
Colt J, Schuur AM (2021) Comparison of nutrient costs from fish feeds and inorganic fertilizers for aquaponics systems. Aquacultural Engineering 95:102205-102214. doi: 10.1016/j.aquaeng.2021.102205
Diem TNT, Konnerup D, Brix H (2017) Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems. Aquacultural Engineering 78:95-104. doi: 10.1016/j.aquaeng.2017.05.002
Doncato KB, Costa CSB (2023) Macronutrients of brown and green water types of bft systems may behave differently during recirculation in saline aquaponics. Brazilian Archives of Biology and Technology, 66: e23210542. doi: 10.1590/1678-4324-2023210542
Effendi H, Wahyuningsih S, Wardiatno Y (2017) The use of Nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Applied Water Science 7(6):3055-3063. doi:10.1007/s13201-016-0418-z
Estrada-Perez N, Hernandez-Llamas A, Ruiz-Velazco JMJ, Zavala-Leal I, Romero-Bañuelos CA, Cruz-Crespo E, Juárez-Rossete C, Domínguez-Ojeda D, Campos-Mendoza A (2018) Stochastic modelling of aquaponic production of tilapia (Oreochromis niloticus) with lettuce (Lactuca sativa) and cucumber (Cucumis sativus). Aquaculture Research 49(12):3723-3734. doi: 10.1111/are.13840
Fallovo C, Rouphael Y, Rea E, Battistelli A, Colla G (2009) Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. Acephala in floating raft culture. Journal of the Science of Food and Agriculture 89(10):1682-1689. doi: 10.1002/jsfa.3641
Gashaw B, Haile S (2020) Effect of different rates of N and intrarow spacing on growth performance of lettuce (Lactuca sativa L.) in Gurage Zone, Wolkite University, Ethiopia. Advances in Agriculture 2020:7364578-7364583. doi: 10.1155/2020/7364578
Geisenhoff LO, Jordan RA, Santos RC, Oliveira FCD, Gomes EP (2016) Effect of different substrates in aquaponic lettuce production associated with intensive tilapia farming with water recirculation systems. Engenharia Agrícola 36(2):291-299. doi: 10.1590/1809-4430-Eng.Agric.v36n2p291-299/2016
Greenfeld A, Becker N, Bornman JF, Angel DL (2021) Identifying potential adopters of aquaponic farming. Journal of Environmental Planning and Management 1(1):1-19.
Heise J, Müller H, Probst AJ, Meckenstock RU (2021) Ammonium Removal in Aquaponics Indicates Participation of Comammox Nitrospira. Current Microbiology 78:894-903. doi: 10.1007/s00284-021-02358-3
Hernández-Naranjo R, Neri-Ramírez E, Astudillo-Sánchez C, Delgado-Martínez R, Rivera-Ortíz P, Vázquez-Sauceda M (2021) Producción de lechuga (Lactuca sativa L.) irrigada con efluentes de tilapia (Oreochromis niloticus) en un sistema acuapónico, Revista Mexicana de Agroecosistemas 8:69-76.
Hu J, Jia W, Wu X, Zhang H, Wang Y, Liu J, Yang Y, Tao S, Wang X (2022) Carbon dots can strongly promote the photosynthesis in lettuce (Lactuca sativa L.). Environmental Science:Nano. doi: 10.1039/D1EN00948F
Jordan RA, Geisenhoff LO, Oliveira FC, Santos RC, Martins EAS (2018) Yield of Lettuce grown in aquaponic system using different substrates. Revista Brasileira de Engenharia Agrícola Ambiental 22(1):27-31. doi: 10.1590/1807-1929/agriambi.v22n1p27-31
Kasozi N, Tandlich R, Fick M, Kaiser H, Wilhelmi B (2019) Iron supplementation and management in aquaponic systems: A review. Aquaculture Reports 15:100221-100230. doi: 10.1016/j.aqrep.2019.100221
Lavres J, Rabêlo FHS, Capaldi FR, Reis AR, Rossi ML, Franco MR, Azevedo RA, Abreu-Júnior CH, Nogueira NL (2019) Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. Ecotoxicology and Environmental Safety 170:578-589. doi: 10.1016/j.ecoenv.2018.12.033
Lima AF, Silva AP, Rodrigues APO, Bergamin G, Torati L, Pedroza Filho MX, Maciel P (2013) Qualidade da água: piscicultura familiar. Embrapa Pesca e Aquicultura-Fôlder/Folheto/Cartilha (INFOTECA-E).
Maucieri C, Nicoletto C, Junge R, Schmautz Z, Sambo P, Borin M. (2018) Hydroponic systems and water management in aquaponics: a review. Italian Journal of Agronomy, 13(1), 1-11. doi: 10.4081/ija.2017.1012
Monsees H, Suhl J, Paul M, Kloas W, Dannehl D, Würtz S (2019) Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLOS ONE 14(6):e0218368- e0218390. doi: 10.1371/journal.pone.0218368
Moya EAE, Sahagún CAA, Carrillo JM, Alpuche PJA, Álvarez‐González CA, Martínez‐Yáñez R (2014) Herbaceous plants as part of biological filter for aquaponics system. Aquaculture Research 47:1716-1726. doi: 10.1111/are.12626
O'Gorman EJ, Ólafsson ÓP, Demars BO, Friberg N, Guðbergsson G, Hannesdóttir ER, Jackson MC, Johansson LS, Mclaughlin OB, Olafsson JS, Woodward G, Gíslason GM (2016) Temperature effects on fish production across a natural thermal gradient. Global Change Biology 22:3206-3220. doi: 10.1111/gcb.13233
Oliveira RPC, Silva PC, Brito PP, Gomes JP, Silva RF, Silveira Filho PR, Roque R.S. (2010) Variáveis hidrológicas físico-químicas na criação da tilápia-do-nilo no sistema raceway com diferentes renovações de água. Ciência Animal Brasileira, 11(3):482-487. doi: 10.5216/cab.v11i3.3847
Otto RF, Reghin MY, Niesing PC, Rezende BLA (2010) Yield response of lettuce under protect cultivation with no woven films. Bragantia 69:855-860. doi: 10.1590/S0006-87052010000400010
Palm HW, Knaus U, Appelbaum S, Goddek S, Strauch SM, Vermeulen T, Haїssam JM, Kotzen B (2018) Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International 26(3):813-842. doi: 10.1007/s10499-018-0249-z
Pattillo DA (2017) An overview of aquaponic systems: hydroponic components. NCRAC Technical Bulletins 123:1-10.
Pinho SM, Flores RMV, David LH, Emerenciano MGC, Quagrainie KK, Portella MC (2022) Economic comparison between conventional aquaponics and FLOCponics systems. Aquaculture 552:737987-737994. doi: 10.1016/j.aquaculture.2022.737987
Pinho SM, Mello GL, Fitzsimmons KM, Emerenciano MGC (2018) Integrated production of fish (pacu Piaractus mesopotamicus and red tilapia Oreochromis sp.) with two varieties of garnish (scallion and parsley) in aquaponics system. Aquaculture International 26(1):99-112. doi: 10.1007/s10499-017-0198-y
Pinho SM, Molinari D, Mello GL, Fitzsimmons KM, Emerenciano MGC (2017) Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering 103:146-153. doi: 10.1016/j.ecoleng.2017.03.009
Rakocy JE (2007) Ten guidelines for aquaponic systems. Aquaponics J 46: 14-17.
Rayhan MZ, Rahman MA, Hossain MA, Akter T, Akter T. (2018) Effect of stocking density on growth performance of monosex tilapia (Oreochromis niloticus) with Indian spinach (Basella alba) in a recirculating aquaponic system. International Journal of Environment, Agriculture and Biotechnology, 3(2): 239073. doi: 10.22161/ijeab/3.2.5
Ren Q, Zhang L, Wei Y, Li D (2018) A method for predicting dissolved oxygen in aquaculture water in an aquaponics system. Computers and electronics in agriculture 151:384-391. doi: 10.1016/j.compag.2018.06.013
Resende GM, Costa ND, Yuri JE, Mota JH (2017) Adaptação de genótipos de alface crespa em condições semiáridas. Revista Brasileira de Agricultura Irrigada 11(1):1145 - 1154. doi: 10.7127/rbai.v11n100553
Sosa A, Padilla J, Ortiz J, Etchevers JD (2012) Biomass accumulation and its relationship with the demand and concentration of nitrogen, phosphorus, and potassium in lettuce. Communications in Soil Science and Plant Analysis 43:121-133. doi: 10.1080/00103624.2012.634695
Sreejariya P, Raynaud T, Dabbadie L, Yakupitiyage A (2016) Effect of water recirculation duration and shading on lettuce (Lactuca sativa) growth and leaf nitrate content in a commercial aquaponic system. Turkish Journal of Fisheries and Aquatic Sciences 16(2):311-319. doi: 10.4194/1303-2712-v16_2_11
The State of World Fisheries and Aquaculture 2020: FAO, 2020. Disponível em: <http://www.fao.org/documents/card/en/c/ca9229en> (Acesso em 25 fev 2022).
Vannucchi-Decicino M, Sala FC, Ferreira MD, Spoto MHF, Verruma-Bernardi MR (2017) Physical-chemical analysis and preference of Rubinela and Pira Roxa lettuces. Revista Brasileira de Produtos Agroindustriais 19:241-245.
Wongkiew S, Hu Z, Chandran K, Lee JW, Khanal SK (2017) Nitrogen transformations in aquaponic systems: a review. Aquacultural Engineering 76:9-19. doi: 10.1016/j.aquaeng.2017.01.004
Wortman SE (2015) Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Scientia Horticulturae, 194:34-42. doi: 10.1016/j.scienta.2015.07.045
Yanes AR, Martinez P, Ahmad R (2020) Towards automated aquaponics: a review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263:121571. doi: 10.1016/j.jclepro.2020.121571
Zhang Y, Zhang Y, Li Z (2022) A new and improved aquaponics system model for food production patterns for urban architecture. Journal of Cleaner Production 342:130867-130878. doi: 10.1016/j.jclepro.2022.130867
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lucas da Silva Alves, Lucas José Coneglian Barbosa, Bruno Rafael De Almeida Moreira, Victor Hugo Cruz, Leonardo Susumu Takahashi, Celso Tadao Miasaki, Paulo Renato Matos Lopes
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, upon submitting the manuscript, agree that if it is accepted for publication, the copyright of the work will automatically be transferred to Científica: Journal of Agricultural Sciences.Opinions and concepts contained in the article and the reliability and accuracy of the information and references presented in it are the sole responsibility of the authors.