Fluctuation of carbon dioxide in four different livestock production systems and an urban area of Paraguay measured with "smart IoT" technology

Authors

DOI:

https://doi.org/10.5016/1984-5529.2023.v51.1433

Keywords:

pollutants, electronics devices, livestock, gases

Abstract

Carbon Dioxide (CO2) is one of the most important gases considered pollutants. For this reason, the generation of information that contributes to the characterization of the environmental footprint generated in urban areas and in representative animal production systems is a priority. Thus, the objective was to compare the fluctuation of the existing CO2 level at man height, in an urban/capital area and in four typical Paraguayan models of animal production: intensive and semi-intensive dairy cattle, broiler chickens (intensive fattening) and rearing/rearing/fattening of pigs (intensive), globally and stratified into time slots. To do this, “IoT” (Internet of Things) technology was used, from a Smart Environment Libelilum® device, which obtained CO2 readings and meteorological variables, transmitting them in real time to a digital platform. Globally, the highest average of parts per million (ppm) of CO2 was observed in the broiler chicken system (512.77 ppm), followed by the urban area (372.94 ppm) and in last position, the shed of semi-intensive bovine production (296.36 ppm), detecting significant differences between groups (p<0.05). The same behavior was found in the time slots; except in some intervals (from 00:00 to 06:00 and from 18:00 to 00:00; p>0.05). The concentration of CO2 in the air measured in the environment of bovine, pig and broiler milk production systems showed generally low values, which in most cases even compared favorably with that measured outdoors in the environment urban.

References

Alberton BAV, Nichols TE, Gamba HR, Winkler AM (2020) Multiple testing correction over contrasts for brain imaging. NeuroImage 216:1-14. doi: 10.1016/j.neuroimage.2020.116760

Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58(3):626-639. doi: http://dx.doi.org/10.1139/f01-004

Anderson MJ, Millar RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecology 305(2):191-221. doi: 10.1016/j.jembe.2003.12.011

Arroyo FR (2018) The circular economy as a sustainable development factor of the productive sector. Innova Research Journal 3(12):78-98. doi: 10.33890/innova.v3.n12.2018.786

Attwood P, Brouwer R, Ruigewaard P, Versloot P, de Wit R, Heederik D, Boleij JS (1987) A study of the relationship between airborne contaminants and environmental factors in Dutch swine confinement buildings. American Industrial Hygiene Association Journal 48(8):745-751. doi: 10.1080/15298668791385507

Banhazi TM, Stott P, Rutley DL, Blanes-Vidal V, Pitchford WS (2011) Air exchanges and indoor carbon dioxide concentration in Australian pig buildings: effect of housing and management factors. Biosystems Engineering 110(3):272-279. doi: 10.1016/j.biosystemseng.2011.08.007

Brannigan PG, McQuitty JB (1972) Concentration-temperature relationships of atmospheric gaseous contaminants. Canadian Agricultural Engineering 14(1):37-41.

Dimov D, Marinov I, Penev T, Miteva C, Gergovska Z (2019) Animal hygienic assessment of air carbon dioxide concentration in semi-open freestall barns for dairy cows. Bulgarian Journal of Agricultural Science 25(2):354-362.

Donham KJ, Popendorf WJ (1985) Ambient levels of selected gases inside swine confinement buildings. American Industrial Hygiene Association Journal 46(11):658-661. doi: 10.1080/15298668591395490

D’Urso PR, Arcidiacono C (2021) Effect of the Milking Frequency on the Concentrations of Ammonia and Greenhouse Gases within an Open Dairy Barn in Hot Climate Conditions. Sustainability 13(16):1-12. doi: 10.3390/su13169235

Feddes JJR, Leonard JJ, Mcquitty JB (1984) Carbon dioxide concentration as a measure of air exchange in animal housing. Canadian Agricultural Engineering 26(1):53-56.

Fernandez MD, Losada E, Ortega JA, Arango T, Ginzo-Villamayor MJ, Besteiro R, Lamosa S, Barrasa M, Rodriguez M (2020) Energy, production and environmental characteristics of a conventional weaned piglet farm in north west spain. Agronomy 10(6):1-13. doi: 10.3390/agronomy10060902

Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J, Sitch S, Canadell JG, Ciais P, Jackson RB, Alin SR, Anthoni P, Bates NR, Becker M, Bellouin N, Bopp L, Chau TTT, Chevallier F, Chini LP, Cronin M, Currie KI, Decharme B, Djeutchouang LM, Dou X, Evans W, Feely RA, Feng L, Gasser T, Gilfillan D, Gkritzalis T, Grassi G, Gregor L, Gruber N, Gürses Ö, Harris I, Houghton RA, Hurtt GC, Iida Y, Ilyina T, Luijkx IT, Jain A, Jones SD, Kato E, Kennedy D, Klein Goldewijk K, Knauer J, Korsbakken JI, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lienert S, Liu J, Marland G, McGuire PC, Melton JR, Munro DR, Nabel JE, Nakaoka S-I, Niwa Y, Ono T, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Rosan TM, Schwinger J, Schwingshackl C, Séférian R, Sutton AJ, Sweeney C, Tanhua T, Tans PP, Tian H, Tilbrook B, Tubiello F, van der Werf GR, Vuichard N, Wada C, Wanninkhof R, Watson AJ, Willis D, Wiltshire AJ, Yuan W, Yue C, Yue X, Zaehle S, Zeng J (2022) Global Carbon Budget 2021. Earth System Science Data 14(4):1917-2005. doi: 10.5194/essd-14-1917-2022

Jones WG, Morring K, Olenchock S, Williams T, Hickey J (1984) Environmental study of poultry confinement buildings. American Industrial Hygiene Association Journal 45(11):760-766. doi: 10.1080/15298668491400575

Kaasik A, Maasikmets M (2013) Concentrations of airborne particulate matter, ammonia and carbon dioxide in large scale uninsulated loose housing cowsheds in Estonia. Biosystems Engineering 114(3):223-231 doi: 10.1016/j.biosystemseng.2013.01.002

Kocaman B, Esenbuga N, Yildiz A, Laçin E, Macit M (2006) Effect of environmental conditions in poultry houses on the performance of laying hens. International Journal of Poultry Science 5(1):26-30. doi: 10.3923/ijps.2006.26.30

Lin J, Mitchell L, Crosman E, Mendoza D, Buchert M, Bares R, Fasoli B, Bowling D, Pataki D, Catharine D, Strong C, Gurney K, Patarasuk R, Baasandorj M, Jacques A, Hoch S, Horel J, Ehleringer J (2018) CO2 and carbon emissions from cities: linkages to air quality, socioeconomic activity and stakeholders in the Salt Lake City urban area. Bulletin of the American Meteorological Society 99 (11):2325-2339. doi:10.1175/BAMS-D-17-0037.1

Maghirang RG, Manbeck HB, Roush WB, Muir FV (1991) Air contaminant distributions in a commercial laying house. Transactions of the ASAE 34(5):2171-2180. doi: 10.13031/2013.31855

Martínez-López OR (2017) Métodos estadísticos aplicados en Zootecnia. Etigraf, Asunción. 292p.

Martínez-López OR, Rodríguez-Acosta MI (2021) Estudio de las fluctuaciones de Metano (CH4) y Dióxido de Carbono (CO2), en dos galpones de producción bovina para leche de Paraguay (intensivo y semi-intensivo), utilizando tecnología “IoT”. Revista Científica De La Facultad De Ciencias Veterinarias De La Universidad Del Zulia 31(3):99-106.

Mihina Š, Sauter M, Palkovičová Z, Karandušovská I, Brouček J (2012) Concentration of harmful gases in poultry and pig houses. Animal Science Papers and Reports 30(4):395-406.

Ni J‐Q, Heber AH, Lim TT, Tao PC, Schmidt AM (2008) Methane and carbon dioxide emission from two swine finishing barns. Journal of Environmental Quality 37(6):2001‐2011. doi: 10.2134/jeq2007.0386

Pérez R, Narvajas S, Terry E (2019) IoT en ALC 2019: Tomando el pulso al Internet de las Cosas en América Latina y el Caribe. Banco Interamericano de Desarrollo (BID). doi: 10.18235/0001968

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Reece FN, Lott BD (1980) Effect of carbon dioxide on broiler chicken performance. Poultry Science 59(11):2400-2402. doi: 10.3382/ps.0592400

Salinas YD, Galván DG, Guzmán I, Orrante JA (2022) El impacto del internet de todas las cosas (IoT) en la vida cotidiana. Ciencia Latina Revista Científica Multidisciplinar 6(2):1369-1378. doi: 10.37811/clrcm.v6i2.1959

Siegel S, Castellan NJ (1995) Medidas de Asociación no paramétricas. En: Estadística no paramétrica aplicada a las ciencias de la conducta, 4.a ed., Trillas. pág.272-282.

Stull RB (1988) An Introduction to Boundary Layer Meteorology. Springer Dordrech. 670p.

Taylor R (1990) Interpretation of the correlation coefficient: a basic review. The Journal of Diagnostic Medical Sonography 6(1):35-39. doi: 10.1177/875647939000600106

UNFCCC - United Nations Framework Convention on Climate Change (2015) The Paris Agreement. Framework Convention on Climate Change. United Nations. Available at: <https://unfccc.int/resource/bigpicture/index.html#content-the-paris-agreemen> (Access on: Mar. 28, 2020).

Vermeer HM, Hopster H (2018) Operationalizing Principle-Based Standards for Animal Welfare-Indicators for Climate Problems in Pig Houses. Animals (Basel) 8(4):2-15. doi: 10.3390/ani8040044

Vtoryi V, Vtoryi S, Lantsova E, Gordeev V (2016) Effect of water conditions on content of carbon dioxide in barns. In: 15th International Scientific Conference Engineering for Rural Development. p.437-441. Available at: <https://agris.fao.org/agris-search/search.do?recordID=LV2016030680> (Access on: Mar. 10, 2022).

Zhang WE, Sheng Q, Mahmood A, Tran DH, Zaib M, Hamad S, Aljubairy A, Alhazmi A, Sagar S, Ma C (2020) The 10 Research Topics in the Internet of Things. In: IEEE 6th International Conference on Collaboration and Internet Computing. p.34-43. doi: 10.1109/CIC50333.2020.00015

Zou B, Shi Z, Du S (2020) Gases emissions estimation and analysis by using carbon dioxide balance method in natural-ventilated dairy cow barns. International Journal of Agricultural and Biological Engineering 13(2):41-47. doi:10.25165/j.ijabe.20201302.4802

Published

09/08/2023

How to Cite

MARTÍNEZ LÓPEZ, R.; ERRECART , P. M. .; CENTURIÓN, L. M. Fluctuation of carbon dioxide in four different livestock production systems and an urban area of Paraguay measured with "smart IoT" technology. Científica, Dracena, SP, v. 51, p. 9, 2023. DOI: 10.5016/1984-5529.2023.v51.1433. Disponível em: https://cientifica.dracena.unesp.br/index.php/cientifica/article/view/1433. Acesso em: 21 nov. 2024.